Appendix 16

Stormwater Report

Robert Birds

Stormwater Management Report East Quarter St Leonards

Issue: P01

11 April 2022

Prepared For: GREATON DEVELOPMENT PTY LTD

Project No.: 20535

Document No.: 20535-RBG-ZZ-XX-RP-CV-87001-P01

Report Amendment Register

lssue Ref	Amended Section(s)	Issue / Amendment Details	Author(s)	Reviewer	Date
P01	All	First Issue	Saeika Saiara	Colin Rope	11/04/22

REVISION/ISSUE AUTHOR:

Juara

Saeika Saiara Signing for and on behalf of **Robert Bird Group Pty Ltd**

Date: 11 April 2022

REVIEWER:

Colin Rope

Signing for and on behalf of **Robert Bird Group Pty Ltd** Date: 11 April 2022

Table of Contents

1 INTRODUCTION		
	1.1	Scope1
	1.2	Project Overview1
	1.3	Existing Site Description and Conditions2
2	DESI	GN INPUTS AND GUIDELINES2
	2.1	Consultation2
	2.2	Codes and Guidelines2
	2.3	Other Consultants Inputs2
3	STOF	RMWATER MANAGEMENT DESIGN
	3.1	Design Storm Events2
	3.2	Design Requirements2
	3.3	Proposed Stormwater Management Design5
4	STOF	RMWATER QUALITY IMPROVEMENTS5
	4.1	Design Objective
	4.2	Treatment Train
	4.3	Water Quality Treatment Train Performance
5	EROS	SION AND SEDIMENT CONTROL
6	CON	CLUSION7

APPENDICES

Appendix A	Civil Drawings
Appendix B	OSD Calculation Sheet

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in accordance with the agreement between the Client and Robert Bird Group Pty Ltd. Robert Bird Group Pty Ltd accepts no liability or responsibility whatsoever for any use of or reliance upon this report by any third party. Any copying of this report to external parties requires the permission of the Client and Robert Bird Group Pty Ltd.

1 INTRODUCTION

1.1 Scope

This document forms the basis for the stormwater management design and documentation for the project.

This report provides reference information, standards and inputs, a description of the existing site and the proposed works, discussion on the hydrological and hydraulic analysis of the proposed stormwater design. This report also addresses the proposed stormwater quality treatment proposed for the development.

1.2 Project Overview

The Project site is located in St Leonards, a suburb in Sydney approximately 5km north-west of the Sydney central business district. The project site is within the Lane Cove Council Local Government Area. The project consists of proposed residential development at 22-34 Berry Road, 21-31 Holdsworth Avenue and 42-46 River Road. The proposed development consists of basement car parking and residential apartment blocks (10 storeys to the north, down to 4 storeys to the south fronting River Road).

Figure 1 – Site Location and Extents

1.3 Existing Site Description and Conditions

The site is approximately 131m long and 73m wide consisting of 16 no. existing residential properties and sloping towards the south onto River Road. The site is bound by Berry Road on the east and Holdsworth Avenue on the west. The total site area is 8758m².

2 DESIGN INPUTS AND GUIDELINES

2.1 Consultation

Robert Bird Group has consulted with the project team during the concept design stages. The proposed stormwater drainage design will be carried out in accordance with the Lane Cove Council's Development Control Plan (DCP).

2.2 Codes and Guidelines

The initial stormwater drainage design of the project has been carried out in accordance with the relevant local, state and national design guidelines and Australian Standard Codes of Practices including the following:

- Australian Rainfall and Runoff 2019 (AR&R).
- AS3500 National Plumbing and Drainage Codes.
- Managing Urban Stormwater: Soils and Construction, 4th Edition, Landcom.
- Lane Cove Council Development Control Plan, Stormwater Management Part O

2.3 Other Consultants Inputs

The concept stormwater design is based on:

- Architectural design information provided by Koichi Takada Architects,
- Landscape concept provided by ASPECT STUDIO

3 STORMWATER MANAGEMENT DESIGN

3.1 Design Storm Events

Proposed stormwater drainage systems are designed for the peak flow of 50-year Average Recurrence Interval (ARI) storm events, and for overland flow / flooding for major storms up to 100-year ARI.

3.2 Design Requirements

3.2.1 Design Criteria

Table 3-1 below have summarised the design criteria for hydrology and hydraulic analysis.

Table 3-1 Hydrology & Hydraulic Design Criteria

	Pit and Pipe D	Design Parameters			
Parameter	Criteri	ia Adopted	Reference		
	Drainage systems shall be designed to conveyance systems as detailed in Au				
	Element of Stormwater System	Design ARI			
Design Average	All pipes and associated components for:		PART 0- Stormwater Management – Section		
Recurrence Intervals	single occupancy developments	20 Year	3.1		
	Residential flat buildings, commercial and industrial developments 50 Year				
	Overland flowpaths	100 Year			
Design pipe flow velocities	Min. velocity: 0.5m/s. Max. velocity: 6m/s to prevent any pipe	PART 0- Stormwater Management – Section 9.2.1 AS3500.3: Plumbing and drainage Part 3 -			
			Stormwater drainage		
Minimum Dine Cines	In ground and within the building deve	lopment - 225mm dia.	AS3500.3: Plumbing and drainage Part 3 - Stormwater drainage		
Minimum Pipe Sizes		Within the road reserve - 375mm dia. Connection to existing council stormwater infrastructure - 375mm dia.			
	Minimum pipe gradient shall be 1.0%.	PART 0- Stormwater Management – Section 9.2.3			
Pipe Gradients	Thrust blocks required for all grades in	AS3500.3: Plumbing			
	A maximum pipe grade of 20% is not t	and drainage Part 3 - Stormwater drainage			
	Location	Minimum Cover			
	Not Subject to vehicle loading	100mm single residential 300mm all other developments	PART 0- Stormwater		
Pipe Cover	Subject to Vehicle Loading	450mm where not in a road	Management – Section 3.3.3		
	Under a sealed road	600mm	3.3.3		
	Unsealed road	750mm			
	Paved Driveway	250mm			
Sub-soil Drainage System	Sub-soil drainage systems are to be di into the kerb and gutter. Sub-soil drain constructed in accordance with Section		PART 0- Stormwater Management – Section 3.2		
Pit Freeboard	The water surface level for inlet pits shall be 0.15m below the invert of the gutter or 0.15m below the underside of the lid for junction pits.		Not mentioned in the Council Stormwater management, however based on previous experiences and hydraulic analysis in Drains.		
	Side Entry - 10% Blocked				
	Grated + 30% Blocked	PART 0- Stormwater Management – Section			
	Combination – 100% side inlet capacit	9.1.3			
Pit Blockages	Letterbox – 50%	AS3500.3: Plumbing and drainage Part 3 - Stormwater drainage			
	All other on grade pits - 20% blocked	Stormwater drainage			
	All other sag pits - 50% blocked				

Page 3

Step Irons	Step irons are required for a AS1657. Pits greater than 6.0m requ	PART 0- Stormwater Management – Section 3.4.3	
	The following table indicates the min		
	Depth to invert (mm)	Minimum Pit Size (mm)	
	300 ≥ D	300x300	PART 0- Stormwater
Minimum internal pit dimensions	600 ≥ D > 300	450x450	Management – Section
	900 ≥ D > 600	600×600	3.4.3
	1200 > D > 900	900×900	
	D > 1200	900×900	
	C	Overland Flow Design	
Parameter		Criteria Adopted	Reference
Overland Flow Design	Maximum DxV = 0.4m2/s Maximum DxV = 0.6m2/s (I	PART 0- Stormwater Management – Section 9.2.2	
Swale Freeboard	Major: All swales shall be o - 150mm (No flood risk - 20% of the flow depth - Velocity head of the flo	Austroads Part 5B: Drainage – open channels, Culverts and Floodway's	
Swale Design	Grass lined channels; adop Manning (n) = 0.03 – (Gras	Austroads Part 5B: Drainage – open channels, Culverts and Floodway's AS3500.3: Plumbing and drainage Part 3 - Stormwater drainage	
Design Swale	Min. velocity: 0.5m/s (Grass	Austroads Part 5B: Drainage – open	
Velocities	Max Velocity: 1.7m/s (Gras	channels, Culverts and Floodway's	
	Maximum DxV = 0.4m ² /s		
Minimum Grade	All Swales are to be design allows the designer to redu achieved.	Austroads Part 5B: Drainage – open channels, Culverts and Floodway's	

Sediment Erosion control					
Parameter		Criteria Adopted	Reference		
Design Approach	Industry Standards in accordance with Council guidelines and Managing Urban Stormwater, Soils and Construction prepared by Landcome 'Fourth Edition 2004, Volume 1'			PART 0- Stormwater Management- Section 0.11 Managing Urban Stormwater: Soils and Construction Volume 1 (Blue Book)	
	Area of disturbance (m2)	Nominal type of activity	Suggested type of plan		
Silt and Sediment Control	< 2,500	Any construction works where disturbance of ground will occur	ESCP addressing soil and erosion and sediment pollution	PART 0-Stormwater Management – Section	
	> 2,500	Large subdivisions, large medium/high density housing, large civil works	SWMP addressing soil erosion and sediment pollution, including a calculation as to the need for a sediment basin	0.11	

3.3 **Proposed Stormwater Management Design**

3.3.1 Catchment Analysis

Stormwater Catchment Plan in Appendix A has shown the post-development catchment breakdown. As shown in the catchment plan, Catchment A will be treated by an OSD tank within the building basement whilst Catchment B will be bypassing the OSD.

3.3.2 On-Site Detention Tank

The proposed OSD tank has been calculated using the Lane Cove Council's OSD calculation sheet (included in Appendix B). The OSD tank has a capacity of 185m3 and the maximum discharging rate from the OSD will be limited to 84l/s by an orifice plate. A portion of the development site will bypass detention as discussed in section 3.3.1 above.

A weir wall will be provided inside the OSD tank with the orifice plate, in case of any blockage to the orifice plate the weir wall will allow the water level to build up within the tank and spill over the weir and free flow into the proposed stormwater system. Access hatches will be placed above the inlet and outlet for maintenance purposes. The outlet from the OSD will discharge into a proposed stormwater pit which will discharge to the existing pit in River Road.

The proposed OSD tank location is shown in the Stormwater Management Plan in Appendix A.

4 STORMWATER QUALITY IMPROVEMENTS

To ensure that the development improves the quality of stormwater leaving the development site, Robert Bird Group have reviewed the site, formulated a Water Sensitive Urban Design Concept, modelled the treatment train performance and have summarised the results in the following sections.

4.1 Design Objective

The Land Cove Council DCP does not stipulate specific stormwater quality objectives for development. As such, the design has adopted the Landcom WSUD Guideline for NSW as a best practice design approach. The average annual pollutant load reduction targets from the Landcom guide have therefore been adopted and are as shown in the

Stormwater Quality Design Criteria			
Pollutant	Average Annual Pollutant Load Reduction Objective (%)		
Total Suspended Solids (TSS)	85%		
Total Phosphorus (TP)	65%		
Total Nitrogen (TN)	45%		

Table 4-1 Stormwater Quality Design Criteria

Gross Pollutants (GP)	90%

(Source: Landcom Water Sensitive Urban Design Guideline)

A concept stormwater quality assessment has been undertaken for the development using MUSIC software. The assessment has determined the quality of stormwater discharging from the site in the post-development scenario to comply with the adopted targets.

Achieved Pollutant Reduction Targets			
Pollutant	Average Annual Pollutant Load Reduction Achieved (%)		
Total Suspended Solids (TSS)	89.7%		
Total Phosphorus (TP)	65.3%		
Total Nitrogen (TN)	53.7%		
Gross Pollutants (GP)	100%		

4.2 Treatment Train

Devices that have been used in the model are listed below, other equivalent proprietary devices may be substituted in detail design provided they meet the above requirements.

- Proprietary filtration device
 A proprietary water quality treatment device is proposed to be utilised to treat all roof catchments. A system such as the Ocean Protect storm filter cartridges system to be installed in the OSD tank, which is effective at removing TSS, TP, and TN to reach the reduction targets.
- Enviropods/Pit baskets

These use a fine mesh to separate debris from stormwater as it enters the pit grate. They are easy to install, maintain, repair and replace as required.

4.3 Water Quality Treatment Train Performance

An initial stormwater quality assessment was undertaken using MUSIC software. The assessment has determined the quality of the water discharging from the site in the post-development scenario. This analysis confirms that the treatments can be achieved using the proposed approach.

A design has been completed for the current project characteristic and arrangement and this has resulted in the proposal for the following treatment systems:

• 12NO. of 690mm StormFilter Cartridges installed in a chamber within the OSD tank.

• 23NO. of OceanGuard Enviropods to be installed in all the stormwater pits.

The treatment train with reduction is illustrated in Table 4-2

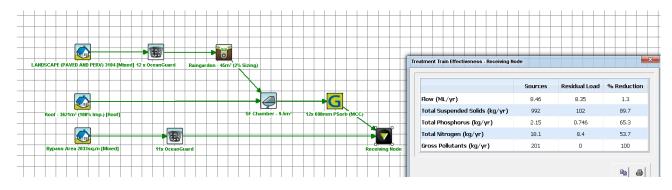


Table 4-2 MUSIC Treatment Train Screenshot, including Percentage of Reduction Results

5 EROSION AND SEDIMENT CONTROL

To maintain the water quality during the construction stage, erosion and sediment control measures will be installed. Soil management measures shall follow the Landcom guidelines – Managing Urban Stormwater Runoff: Soils and Construction ("Blue Book").

Potential erosion and sediment control measures for the development may include, but not limited to, the following:

- Sediment fences around stockpiles and construction zones where soils are exposed.
- Settlement tanks/basins
- Catch drains/bunds to collect construction site runoff and convey flows to the settlement basin.
- Sediment protection devices on existing and proposed inlet pits i.e., filter socks; and
- Truck Wash/Shaker Grid at all site access/egress points.

6 CONCLUSION

This Report outlines the concept design principles that are intended for the management of stormwater runoff quality and quantity associated with the proposed development.

APPENDICES

Appendix A Civil Drawings

Appendix B

OSD Calculation Sheet

APPENDIX A Civil Drawings

APPENDIX B OSD Calculation Sheet

THE

Appendix 13 – OSD Checklist for DA Submission

ON-SITE STORMWATER DETENTION CHECKLIST

This form is to be used to determine if OSD will be required for residential developments and must be completed before the submission of any application.

PART A. Address and type of proposed development

	<u></u>		ANE CON
	NoStreet Name oDP No		
Type	of development (tick relevant box).		
	Duplex Residential Building		Multiple Occupancy Residential (villa, flats etc)
	Extensions		Single Residential
	Commercial		Garages
	Other		
PAR	F B. Exemption for discharge directly to La	ne Cove Riv	<u>er</u>
	site within the designated exclusion zone a irm with Council's Urban Services Division	-	shore of the Lane Cove River. (tick one only).
	No		Yes
If yes	, OSD is not required, If no go to part C		
PAR	ΓC. Exemption for minimum allowable siz	e of site imp	ervious area
(a) (b) (c) (d) (e) (f) (g)	Existing impervious area to be removed . Existing impervious to be retained Proposed new impervious area: (d1) Roof area (d2) Driveways (d3) Other paved area (d4) Supplementary areas (i.e. H Total proposed NEW impervious area (d) Total post development impervious area (d)	Pervious pav: 1) + (d2) + (d3 (c) + (d1) + (d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OSD will not be required if one or more of the following are satisfied

(e) is less than 50m ² increase in site cover and	(f) is less than 65% of the total site area.
(only applicable for alterations and additio	ons)

(g) is less than 35% of site area

<u>Note</u>: If OSD is not required, then the collected stormwater runoff is to be directed to a 600x600mm environmental pollution control pit with sediment collection sump and drainage filter, prior to discharging to an approved outlet. The control pit is to be designed as a gross pollutant trap to remove pollutants from the stormwater flow.

PART D. Special Consideration

Where the applicant believes that special consideration should be given for exemption from OSD, even though Parts A, B, C, or D are not satisfied, they may request exemption from OSD. Consideration may only be given on reasonable grounds and should be discussed with Council's Development Engineer.

Lane Cove Development Control Plan

Adopted on 22 February 2011 Amendment 2 – 9 December 2011 Page 60

THE

INE CO

Appendix 14 - OSD Calculation Sheet

ON-SITE DETENTION CALCULATION SHEET

DEVELOPMENT TYPE: Eastern Quarter ADDRESS:

Site Area (m²)	8758	(A)			
Total Impervious Area (roofs, driveways, hardstand etc) (m ²)	6303.7	(B)			
Total Area draining to the Storage Facility (m^2) (impervious and pervious areas)	6725	(C)			
New Impervious Area bypassing the Storage Facility	500	(D)			
$\frac{(B) + (D)}{(B)} =$	1 <u>.0793</u>	(E)			
canno Permitted Site Discharge (PSD) rate per m ²	t be greater than 1.25.				
If (D) = 0 then PSD = 0.014 l/sec/m^2 If (D) $\neq 0$ then PSD = $0.014x(E)^{-1.37} \text{ l/sec/m}^2$	00126	(E)			
		(F)			
PERMITTED SITE DISCHARGE (I/s) (C) x (F) Storage Volume per m² (G) = 0.0255 m³/m² for all Catchments	84.8021/s	(G)			
SITE STORAGE REQUIREMENT (m ³) ((C) + (D)) x (G)	184.24 m ³				
OUTLET CONTROL - using a Sharp Edged Orifice Plate					
Height Difference between top water level and Centre of Orifice (m) (H)					
ORIFICE DIAMETER (mm)					
159 mm	$= 21.9 \sqrt{\frac{P}{100000000000000000000000000000000000$	SD (H)			

Should pipe and pit losses be used to control outflow, the calculations are to be attached.

Appendix 15 – OSD Certification Form

LANE COVE COUNCIL ON-SITE STORMWATER DETENTION CERTIFICATION SHEET Address DA Number Required Volumem³ Permissible Site Dischargel/sec Type of Detention System Tank Surface Basin Description Buffa tank, circular concrete Description, Grassed, Landscaped, Paved, Precast concrete, Brick or block wall Retaining walls:- sleeper, brick, pine log, fill Other Other Dimensions Lengthm Widthm Average lengthm Av Widthm Depthm Average Depthm Max Depthm If over 1.2 m deep are step irons provided yes/no Has adequate fencing been provided yes/no Access to tank grate lid other Actual Volume Attainedm3 Overflow type: Pipe Weir Surface grate Where is it directed Outlet Stainless Steel orificemm dia Control Galvanised plate orifice.....mm dia Othermm dia Depth from centre of orifice to overflow.....mm

Outlet Pipe: Where is it directed, kerb, pipe Other..... Is connection in accordance with Council

Maximesh yes/no Debris Screen Is a handle provided Other..... Is it readily removable without tools yes/no Is screen fitted exclusively over outlet yes/no Dimensions Widemm; Longmm Deepmm Weepholes Silt Trap ves/no Has subsoil drainage been provided to outlet line yes/no Is there any uncontrolled flow from the impervious areas on the site . yes/no if yesm²

Can access be easily gained to the system for inspection purposes ves/no

COMMENTS

.....

I HEREBY CERTIFY THE ABOVE ON-SITE DETENTION STORAGE FACILITY HAS BEEN CONSTRUCTED IN ACCORDANCE WITH THE APPROVED PLANS

NAME:DATEDATE

QUALIFICATIONS:

Sydney Office

Robert Bird Group Pty Ltd ABN 67 010 580 248 ACN 010 580 248

Level 6, 100 Pacific Highway North Sydney NSW 2060 PO Box 6461 North Sydney NSW 2059 Australia

P: +61 (0) 2 8246 3200 F: +61 (0) 2 8246 3201

www.robertbird.com